Application of Probiotics to Control Foodborne Pathogens from Farm to Fork

Mindy Brashears, Ph.D.
Director, International Center for Food Industry Excellence
Professor, Department of Animal and Food Sciences
Lactic Acid Bacteria Characteristics

Gram-positive bacteria

Non-sporeforming cocci, coccobacilli, or rod

Usually grow anaerobically, but can also grow in the presence of Oxygen

- *Lactococcus*
- *Lactobacillus*
- *Pediococcus*
- *Leuconostoc*
Lactic Acid Bacteria (LAB)

“Friendly Bacteria”

Lactic Acid Bacteria have a long history of application in the food industry

LAB Benefits (non-exhaustive):

Direct antagonism with enteric pathogens

- Production of antimicrobial compounds (organic acids and bacteriocins)
- Competition for nutrients and minerals
- Occupy adhesion sites in the intestinal tract

Improve intestinal barrier function and activate mucosal immunity
The “ART” of Probiotic Technology

• Microbiological Skill is needed but there is an art to combining strains to meet a specific need
 • Stanley Gilliland
• Some combinations are synergistic, some are antagonistic to each other
• Strains must be selected and screened for the specific purpose and tested in the lab and in real world settings
• There is ALWAYS a dose-response and product must be used by dose
PRE-HARVEST APPLICATIONS
Selection Criteria for NP51

- Began in 1997
- **Sole Purpose:** Identify Strains for Cattle Feeding to Inhibit *E. coli* O157:H7
 - 686 pure cultures isolated and screened
 - 52% showed inhibition ability towards *E. coli* O157:H7
- Several strains inhibitory in manure and rumen fluid
- 4 Strains finally selected for animal studies
 - JFP 66:355
5 Animals Challenged with *E. coli* and Fed Direct-Fed Microbials (DFM)

4 of the 5 DFM Combinations Reduced Shedding by 80%

- Controls – Shed Pathogens for Entire 60 Days of Study
- DFM Treatments – Animals Shed 3-7 Days
- 3-5 Log Reduction in Treated Animals that were positive
4 Year Cumulative Summary
Reduction of *E. coli* O157 in Beef Feedlot Cattle Using NP 51 (Texas Tech/WTAMU)
Quantitative Reduction of *E. coli* O157 using a newly developed MPN method in Positive Samples after Treatment with NP 51
2012-Salmonella Reduction in Lymph Nodes using a High Dose of NP51 (10^9/head/day)

- **Large Pen**
 - Control: 75%
 - 10^9 NP51: 25% reduction
 - P = 0.005

- **Small Pen**
 - Control: 35%
 - 10^9 NP51: 84% reduction
 - P < 0.05

- **Log cfu/g**
 - Control: 3.0
 - 10^9 NP51: 0.1
 - 90% Reduction

- **CFU/node**
 - Control: 4.5
 - 10^9 NP51: 0.5
 - 90% Reduction
Lactobacillus NP51 Summary

- Supplementing Feed with a 10^9/head/day of *Lactobacillus* NP51 consistently reduces STEC O157 in the feces and on the hide of cattle

- Reductions in prevalence and concentration are observed

- *Salmonella* in lymph nodes is also reduced in prevalence and concentration

- *Salmonella* not reduced in feces/hide

- No detrimental impact on performance and potentially some improvements
“NEXT GENERATION”
PRE-HARVEST APPLICATIONS
A systematic method was used to isolate lactic acid bacteria strains for multi-purpose targeted uses.

Reduction of Foodborne pathogens in laboratory media after 24 hours at 37 F

*Experiments were replicated 3 times. A statistical difference was detected between control and treated samples for all pathogens.
OBJECTIVES

- Determine the pathogen reduction, emergence of antimicrobial resistance patterns of *Enterococcus*, cattle performance, and carcass characteristics of cattle fed diets supplemented with *Lactobacillus salivarius* L28 with and without sub-therapeutic antibiotics.

Treatments

- No DFM, no sub-therapeutic antibiotic, and no ionophore (CON)
- Monensin (Rumensin 90; Elanco; Greenfield, IN; 33 g/ton DM basis) Tylosin (Tylan 40; Elanco; 11 g/ton DM basis) (MonTy),
- Monensin and *L. salivarius* L28 (10^6 CFU hd/d) (MonPro).
Food Safety Data – Fecal Pathogen Presence

- **Salmonella**
 - Control: 35%
 - MonTy: 25%
 - MonPro: 15%

- **E. coli O157:H7**
 - Control: 20%
Multi-Drug Resistance of Enterococcus Isolates
Multi-Drug Resistance of Generic *E. coli* Isolates

![Bar graph showing the percentage positive for MonTy, Control, and MonPro. MonTy has the highest percentage, followed by Control and MonPro.](image)
• There were no differences in final BW ($P = 0.09$) or overall ADG ($P = 0.09$) across treatments.

• Carcass weight, dressing percent, LM area, and yield grade did not differ ($P > 0.23$) across treatments.

• All treatments graded USDA Choice or better.
Conclusions

• Supplementation with L28 resulted in reduced pathogen presence of *Salmonella* and *E. coli* O157:H7.

• The presence of L28 along with Monensin resulted in antibiotic resistance patterns similar to the isolates from cattle fed no sub-therapeutic supplementation.

• These results also suggest that *L. salivarius* L28 does not have a negative impact on performance and may have similar performance and carcass responses to beef cattle fed sub-therapeutic levels of antibiotics.
FOOD APPLICATIONS
Determination the reduction of food-borne pathogens in ground beef by a LAB cocktail of 51, 3, 7 and 28

• Lactiguard cocktail (1 x 10⁷ cfu/g ground beef):
 NP 51 + L7 + D3 + C28

• Pathogens (1 x 10³ cfu/g ground beef):
 Non O157 STECs EC 026 and EC 0111
 Salmonella Typhimurium ATCC 14028, *Salmonella* Heidelberg Sheldon 33471
 E. coli O157: H7 A4 966, E. coli O157: H7 A5 528

• Storage conditions: 4 °C, 5d
Reductions of *Salmonella* in ground beef after storage with lactic acid bacterial strains, NP51, NP3, NP7, and NP 28.
Reductions of *E. coli* O157:H7 in ground beef after storage with lactic acid bacterial strains, NP51, NP3, NP7, and NP 28.
Reductions of *Non-O157 STECs* in ground beef after storage with lactic acid bacterial strains, NP51, NP3, NP7, and NP 28
Other Applications of L28 (Next Generation)

- Dry Dog Kibble
- Stainless Steel
- Chicken Fat
In the past year alone, there have been many recalls of pet food attributed to foodborne illness.

Pets that consume contaminated pet kibble can become colonized by *Salmonella* without exhibiting clinical signs and shed the organism in their feces asymptomatically.

- Making the pet a possible source of contamination to people in the household
Commercially available pet kibble was obtained, inoculated with *Salmonella* and treated with L28 in a chicken fat coating.

Kibble was bagged and stored at ambient temperature.

Samples were obtained on hours 0, 24, and 72 to determine pathogen reductions.

Samples were plated onto XLD with a thin-layer overlay to recover injured cells.

When populations were below detection limits by direct plating, pre-enrichment was conducted to detect survivors.
Pathogen Reduction in Pet Kibble with L28

*After 48 hours of L28 treatment: Salmonella was not detectable by direct plating or enrichment.

Each Experiment had 3 Replications and the Entire Experiment was repeated 3 Times.
Application: Stainless Steel, *Listeria monocytogenes*

- *L. monocytogenes* is a foodborne pathogen that has caused many recalls in the last couple of decades.
- *L. monocytogenes* is known to have the ability to attach and form a biofilm on many surfaces, including stainless steel.
- Biofilms are not easily removed by common cleaning and chemical sanitizing methods. Therefore, finding innovative ways to control *L. monocytogenes* biofilm formation, growth and subsequent cross-contamination of finished RTE food products is critical.
Purpose: The purpose of this experiment was to evaluate the ability of L28 and commercially available Lactic Acid Bacteria strain (FS56) to inhibit *L. monocytogenes* (N1-002) on stainless steel coupons.

LAB applied to stainless steel coupons at 7 logs (application concentration)
Pathogen Reduction on Stainless Steel after 24 hours

Listeria monocytogenes was not detectable by means of direct plating or enrichment recovery methods

Experiment replicated 3 times
• Chicken fat being a rich energy source has many important functions in the canine and feline diet

• It is often used to coat pet food kibble

• However, *Salmonella* is a major pathogen in poultry products and is a frequent vehicle of these bacteria and thus posing a risk to pet food
Chicken fat treatments

- Chicken fat was inoculated with 5.0 log cfu/g of *Salmonella*.
- Fat was treated with 7 log cfu/g of L28.
- Fat was held at 37°C.
- Resultant populations were enumerated on XLT with a thin-layer overlay to recover injured cells.
- Populations below the detection limit by direct plating were enriched and subjected to molecular screening to detect survivors.
Results: Chicken Fat

After 1 day at room temperature there were statistically significant differences between the control and the treatment samples.

After 3 days *Salmonella* in the control chicken fat had grown to approximately 7.13 log cfu/ml.

On day 3 the **L28** treatment resulted in a **7.13 log cfu/ml reduction** and *Salmonella* was not detectable.
CAUTION!!!!

- NOT ONE PROBIOTIC CAN DO EVERYTHING!!
- “In Plant” studies can be misleading so be sure they are well designed.
 - ONE EXAMPLE – inhibition in the broth instead of in the product/plant
- Some products do not work!!!
Conclusions

• While probiotics are not a “new technology” in concept, the application of the technology is expanding in novel ways.

• Must select specific strains for specific functions.

• Must improve the technology as we learn more about the industry needs

• Applications must be optimized for specific needs
Acknowledgements

• Co-Investigators
 • Kendra Nightingale, Guy Loneragan, Jhones Sarturi, Mark Miller, Todd Brashears, Nathan Hall

• Graduate Students
 • David Campos, Erin Castilli, Jorge Franco, Luis Jimenez, Adam Castillo, Tosha Opheim, Andrea English

• Funding Agencies
 • Texas Beef Council, Nutrition Physiology, Ranch Road Holdings, International Center for Food Industry Excellence
Dr. Mindy Brashears, Dr. Todd Brashears, Dr. Kendra Nightingale, and Dr. Loneragan are co-owners of NexGen Innovations, producer of L28 (Trade Name – Probicon).

Drs. Brashears and Loneragan have received consulting fees from Nutrition Physiology, LLC, producer of NP51 (Trade Name – Bovamine Defend) and NP51, NP3, NP7, and NP 28 (Trade Name Lactiguard).
QUESTIONS