Assessing Protein Quality in Food: Navigating Regulations and Sources

James D. House
Department of Human Nutritional Sciences
University of Manitoba
Winnipeg, MB, Canada
Disclosure Statement

• Current Grants & Contracts
 • Agriculture and Agri-Food Canada Growing Forward 2 – Private:Public Partnership with:
 • Pulse Grower Associations and processing industries
 • Cereal Grower Associations and agronomic industries
 • Natural Sciences and Engineering Research Council of Canada (NSERC)
 • Discovery Grant, Connect Grant
 • Industry Contracts and Technical Services Agreements related to Protein Quality Assessment of foods and food ingredients
 • Egg Farmers of Canada
 • Manitoba Egg Farmers
 • MITACS Canada

• Current Participation on Advisory Boards and Grant Review Panels
 • Danone Canada
 • ILSI North America – Canadian Advisory Council
 • AOAC International Editorial Board

• No financial interests in agri-food/nutrition companies
Outline

• Communicating Protein Messages
• Protein Quality: Supporting Protein Content Claims
• Current and Proposed Approaches to Measuring Protein Quality
 • Challenges and Opportunities
• Protein Quality Workshop – Overview of Key Findings
Consumers are Seeking Protein

- 64% of respondents try to consume protein
- More prevalent in women and those with higher incomes

2016 Food and Health Survey. Food Insight, May 11, 2016. International Food Information Council
Communicating Food Protein Messages

• Nutrition Facts Panel
 • Crude Protein Content
 • % Daily Value (in US)

Nutrition Facts
Valeur nutritive
Per 1 bowl (300 g) / Pour 1 bol (300 g)

<table>
<thead>
<tr>
<th>Amount</th>
<th>% Daily Value</th>
<th>Teneur</th>
<th>% valeur quotidienne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calories / Calories</td>
<td>440</td>
<td>29 %</td>
<td>29 %</td>
</tr>
<tr>
<td>Fat / Lipides</td>
<td>19 g</td>
<td>29 %</td>
<td>21 %</td>
</tr>
<tr>
<td>Saturated / Saturés</td>
<td>4 g</td>
<td>21 %</td>
<td></td>
</tr>
<tr>
<td>+ Trans / Trans</td>
<td>0.2 g</td>
<td>21 %</td>
<td></td>
</tr>
<tr>
<td>Cholesterol / Cholestérol</td>
<td>35 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium / Sodium</td>
<td>880 mg</td>
<td>36 %</td>
<td></td>
</tr>
<tr>
<td>Carbohydrate / Glucides</td>
<td>53 g</td>
<td>18 %</td>
<td></td>
</tr>
<tr>
<td>Fibre / Fibres</td>
<td>4 g</td>
<td>16 %</td>
<td></td>
</tr>
<tr>
<td>Sugars / Sucres</td>
<td>6 g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein / Protéines</td>
<td>15 g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin A / Vitamine A</td>
<td>45 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin C / Vitamine C</td>
<td>4 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium / Calcium</td>
<td>20 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron / Fer</td>
<td>20 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Claims
 • Origin Claims
 • Composition Claims
 • Symbols
 • Nutrient Content Claims
 • Source → Excellent Source
 • Comparative Claims

High in Protein

Excellent Source of Protein
What Evidence is Needed to Support Content Claims?

Quantity vs. Quality

- Nitrogen Content
- Nitrogen Conversion Factor
 - Per Weight or Volume basis
 - Per % Energy basis
- Amino Acid Composition
- Digestibility/Availability of Amino Acids for Metabolic Work
What Evidence is Needed to Support Content Claims?

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Basis for Protein Content Claims</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Protein Quality & Quantity</td>
<td>Protein Rating System based on the Protein Efficiency Ratio (PER)</td>
</tr>
<tr>
<td>United States</td>
<td>Protein Quality & Quantity</td>
<td>Protein Digestibility-Corrected Amino Acid Score (PDCAAS)</td>
</tr>
<tr>
<td>European Union</td>
<td>Protein Quantity</td>
<td>Expression of protein content relative to energy content</td>
</tr>
</tbody>
</table>

Proposed Method: Digestible Indispensable Amino Acid Score (DIAAS)
Establishing Evidence for Protein Content Claims

Protein Quality Assessment

- Proportion of Essential Amino Acids (PER)
- Protein Digestibility and Availability (PDCAAS)
- Protein Digestibility and Availability Adjusted for Amino Acid Composition (DIAAS)

How well does the amino acid pattern match human amino acid needs?

To what extent are the amino acids digested, absorbed and ultimately made available for metabolic demands?
The Protein Rating Approach

- Based on Protein Efficiency Ratio
 - Rat bioassay
 - Weight gain/Protein intake over 28 days
- Adjustments relative to reference protein (Casein)
 - Adj. PER of Casein = 2.5
- Protein Rating = PER x Protein Contained in Reasonable Daily Intake
 - 20 -> 39.9 = Source of Protein
 - 40 and above = Excellent Source of Protein

Eggs

Protein Rating = 100 g x 12.63% x 3.1
= 39.2 (Good Source)
The Protein Rating Approach

Advantages

• Simple
• Provides a summative biological response to protein intake

Disadvantages

• Rodent bioassay → not reflective of human amino acid needs
• Ethical constraints
• Limited data available
 • 47 entries in the CFIA PER table
 • 184,022 foods in USDA Food Composition Databases
• Non-additive
 • Limits predictions for new food products
The PDCAAS Approach

Product of:

• Amino Acid Score (AAS)
 o AA in food/AA in reference pattern
 o mg/g protein
 o Reference pattern of 2-5 yr old school children (1991)

• True Fecal Protein Digestibility (TFPD)
 o Fecal N output/Dietary N input
 o Corrected for endogenous losses
The PDCAAS Approach

Protein Content Claims

• PDCAAS x Protein content of “RACC”
 • Representative amount customarily consumed

• Compare to Daily Value (50 g)
 • 5 – 9.9 g = Good Source
 • 10 g or greater = Excellent Source

Eggs

50 g x 12.63% x 1.0 = 6.32 (Good Source)
The PDCAAS Approach

Advantages

• Simple
• Robust AA datasets
• Additive
 • Permits calculations of PDCAAS values of mixtures

Disadvantages

• Rodent bioassay → not reflective of human amino acid needs
• Fecal protein digestibility
 • Impact of gut microbiota
• Ethical constraints
• Truncation of values > 1.00
Hot Topics on Protein: All Pros, No Cons?
ILSI North America Annual Meeting 2017

PER vs. PDCAAS

In Canada:
• CFIA will permit PER values to be calculated from PDCAAS

 \[
 \text{Calc. PER} = \frac{\text{PDCAAS (Test)}}{\text{PDCAAS (Casein)} \times 2.5}
 \]

Various Pulses/Cereals & Processing Methods

PER vs. PDCAAS

\[
Y = 0.3415X + 0.006442
\]

\[r^2 = 0.64\]

Calculated vs. Measured Adjusted PER Values

Various Pulses/Cereals & Processing Methods

Quadratic Fit; \(R^2 = 0.442\)
The DIAAS Approach

Dietary protein quality evaluation in human nutrition

Report of an FAO Expert Consultation

The assessment of amino acid digestibility in foods for humans and including a collation of published ideal amino acid digestibility data for human foods

Members of the Sub-Committee:

Report of a Sub-Committee of the 2011 FAO Consultation on “Protein Quality Evaluation in Human Nutrition” on:

Research approaches and methods for evaluating the protein quality of human foods

Proposed Approach – Has yet to be adopted by any jurisdiction
The DIAAS Approach

Proposed Approach

• AA treated as individual nutrients
• Uses ileal digestibility values
• Scores >1.00 are not truncated

Advantages

• Should be more reflective of the ability of a food to provide available protein

Disadvantages

• Bioassay
 • Ethical constraints
• Multiple analyses required for one DIAAS value
Methods Comparison

Technical Considerations

<table>
<thead>
<tr>
<th>Quantity vs. Quality</th>
<th>Analytical Issues</th>
<th>Choice of Species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Digestibility vs. Availability</th>
<th>in vivo vs. in vitro</th>
<th>The Numbers</th>
</tr>
</thead>
</table>
| ![Digestion Process](image4) | ![In vivo vs. In vitro](image5) | Reference Pattern
Serving Size
Threshold Values
Conversion Factors |
Methods Comparison

Other Considerations

<table>
<thead>
<tr>
<th>Social License</th>
<th>Cost</th>
<th>Variability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Breeding
- GMO
- Nutrition
- Climate
- Novel Processes
- Modifications

- Genetics (Plant/Animal)
- Environment
- Processing

Social License
- Against animal testing

Cost
- Increase

Variability
- Graph with peaks and troughs

ILSI North America Annual Meeting 2017
Protein Quality Workshop – Addressing Research Gaps
November 16, 2016, Toronto, ON

Featured Speakers:
- Nora Lee, Health Canada
- Blakely Fitzpatrick, US FDA
- Sarwar Gilani, Consultant

Program in Food Safety, Nutrition and Regulatory Affairs (PFSNRA)

Nutritional Sciences
UNIVERSITY OF TORONTO

Health Canada

Commodity Association

Government

Academia

Food Industry

Other (please specify)
Workshop – Key Themes

- Harmonize approaches used across jurisdictions
 - Provide certainty, affordability, accessibility, predictability
- Address significant research gaps
 - Does measuring protein quality address a human health concern
 - Dietary patterns vs. special purpose foods (RUTF)
 - Alternatives to *in vivo* assays?

White paper being prepared for publication